

Title

EG59XX Individual Project in XXX Engineering

By

Morgiane, Ph.D., M.Eng. etc. STUDENT NUMBER

A dissertation submitted in partial fulfilment of the requirements of the award of Master of Science in XXX Engineering at the University of Aberdeen

(Month, year)

Abstract

In this dissertation, I will discuss most efficient ways of teaching \LaTeX TeXto PGTs students.

Contents

Αl	bstract			11					
1	Introduction			vii					
	1.1 Text in bold			vii					
	1.1.1 Example of subsection			vii					
	1.2 Text in Italic			vii					
	1.3 Text in color			vii					
2	Literature review			viii					
3	Methodology			ix					
4	Mathematics Examples								
	4.1 Displayed Maths			X					
	4.2 Inline Maths			X					
	4.3 Systems of Equations			X					
	4.4 Matrices			X					
5	Conclusions			xii					
\mathbf{A}	Matlab code								
	A.1 Matlab code to solve differential equation			xiii					

List of Figures

3.1	Scottish Maths Support Network Logo	ix
3.2	Creative Common Symbol	ix

List of Tables

2.1	Members of the	SMSN	committee.										,	v

Introduction

This chapter introduces the topic

1.1 Text in bold

1.1.1 Example of subsection

Hello world!

1.2 Text in Italic

Hello world!

1.3 Text in color

Hello world!

- Formatting text with Latex;
- Trying a few commands

Figures and Tables

2.1 Figures

Figure 3.2 was borrowed from MathCentre and Table 2.1 was created after the SMSN website.

Figure 2.1: Scottish Maths Support Network Logo

Figure 2.2: Creative Common Symbol

2.2 Table

Surname	Name	Role
Macdonald	Callum	Chair
Durkacz	Kate	Treasurer
Ahmed	Shazia	Secretary
Davidson	Peter	Committee Member
Richard	Morgiane	Committee Member

Table 2.1: Members of the SMSN committee

Mathematics Examples

3.1Displayed Maths

The equation:

$$ax^2 + bx + c = 0$$

3.2 Inline Maths

has 2 solutions $x_1 = \frac{-b + \sqrt{b^2 - 4 \cdot a \cdot c}}{2a}$ and $x_2 = \frac{-b - \sqrt{b^2 - 4 \cdot a \cdot c}}{2a}$.

Systems of Equations 3.3

The following equations:

$$\frac{dy}{dx} + 3y = e^x \tag{3.1}$$

$$\frac{dy}{dx} + 3y = e^x$$

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 2y = (x-1)^2$$
(3.1)

are ordinary differential equations. Equation 4.1 is an ODE of the first order and Equation 4.2 is an ODE of the second order.

Matrices 3.4

The matrix of following system of equations:

$$\begin{cases} x - 3y + 4z = 5 \\ 2x + y + z = 3 \\ 4x + 3y + 5z = 1 \end{cases}$$

is:

$$\begin{pmatrix} 1 & -3 & 4 \\ 2 & 1 & 1 \\ 4 & 3 & 5 \end{pmatrix}$$

The identity matrix, in any dimension, has the form:

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & 1 \end{pmatrix}$$

Conclusions

Appendix A

Matlab code

Description of Matlab code

A.1 Matlab code to solve differential equation

```
1 N = 10;
                             % Number of grid points
2 x = linspace(0,0.5*pi,N); % Setup the x grid
3 dx = x(2) - x(1);
                            % Set Delta x on a uniform grid Set Delta x
     on a uniform grid Set Delta x on a uniform grid Set Delta x on a
     uniform grid
y = zeros(N,1);
                    \% Pre-allocate the solution vector
6 y(1) = \exp(-1);
                    % Set the initial condition
s for i = 1:N-1 % Loop over each point in the grid
  xhalf = 0.5*(x(i) + x(i+1));
   yhalf = y(i) + 0.5*dx*y(i)*sin(x(i));
   y(i+1) = y(i) + dx*yhalf*sin(xhalf);
12 end
```