

Title

${\rm EG59XX}$ Individual Project in XXX Engineering

By

Morgiane, Ph.D., M.Eng. etc. STUDENT NUMBER

A dissertation submitted in partial fulfilment of the requirements of the award of Master of Science in XXX Engineering at the University of Aberdeen

(Month, year)

Abstract

In this dissertation, I will discuss most efficient ways of teaching ${\rm IAT}_{\rm E}{\rm X}$ to PGTs students.

Contents

Abstract ii					
1	Introduction vii				
	1.1 Text in bold \ldots	vii			
	1.1.1 Example of subsection	vii			
	1.2 Text in Italic	vii			
	1.3 Text in color \ldots	vii			
2	Literature review vii				
3	Methodology iz				
4	Conclusions				
\mathbf{A}	Matlab code	xi			
	A.1 Matlab code to solve differential equation	xi			

List of Figures

3.1	Scottish Maths Support Network Logo	ix
3.2	Creative Common Symbol	ix

List of Tables

2.1 Members of the SMSN commit	tee
--------------------------------	-----

vi

Introduction

This chapter introduces the topic

1.1 Text in bold

1.1.1 Example of subsection

Hello world!

1.2 Text in Italic

Hello world!

1.3 Text in color

Hello world!

- Formatting text with Latex;
- Trying a few commands

Literature review

This chapter reviews existing literature

Surname	Name	Role
Macdonald	Callum	Chair
Durkacz	Kate	Treasurer
Ahmed	Shazia	Secretary
Davidson	Peter	Committee Member
Richard	Morgiane	Committee Member

Table 2.1: Members of the SMSN committee

Methodology

This chapter discusses methodology of the work

Figure 3.2 was borrowed from MathCentre and Table 2.1 was created after the SMSN website.

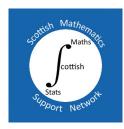


Figure 3.1: Scottish Maths Support Network Logo

Figure 3.2: Creative Common Symbol

Conclusions

Appendix A

Matlab code

Description of Matlab code

A.1 Matlab code to solve differential equation

```
1 | N = 10;
                             % Number of grid points
2 x = linspace(0,0.5*pi,N); % Setup the x grid
dx = x(2) - x(1);
                           % Set Delta x on a uniform grid Set Delta x
     on a uniform grid Set Delta x on a uniform grid Set Delta x on a
     uniform grid
4
5 y = zeros(N, 1);
                  % Pre-allocate the solution vector
6 | y(1) = exp(-1);
                  % Set the initial condition
7
8 for i = 1:N-1 % Loop over each point in the grid
9 xhalf = 0.5*(x(i) + x(i+1));
10 yhalf = y(i) + 0.5*dx*y(i)*sin(x(i));
11 y(i+1) = y(i) + dx*yhalf*sin(xhalf);
12 end
```